Small Frequency Converter

Operation Manual

$220 \mathrm{~V} \quad 0.4 \mathrm{KW}-5.5 \mathrm{KW}$ $400 \mathrm{~V} \quad 0.4 \mathrm{KW}-11.0 \mathrm{KW}$

- Please read this Manual carefully and understand the content, so as to correctly install and use the converter.
- Please give this Manual to the end user and properly keep it.
- The technical specifications of the converter is subject to change without prior notice.

Solemn Statement

Thank you for using this frequency converter. Before use, please read this Manual carefully to familiarize yourself with the safety precautions of this product.

Safety Precautions:

1. Before wiring, please check whether the input power is off.
2. The wiring should be carried out by professional electricians.
3. The grounding terminal must be grounded.
4. After the completing the emergency stop circuit wiring, please check whether the emergency stop action is effective.
5. Do not connect the output line of the frequency converter to the housing. Do not short circuit the output line.
6. Please confirm whether the voltage of the AC main circuit power supply is consistent with the rated voltage of the converter.
7. Do not carry out voltage resistance test on the frequency converter.
8. Please connect the brake resistor according to the wiring diagram.
9. Do not connect the power cord to the output terminals U, V and W .
10. Do not connect the contactor to the output circuit.
11. Be sure to install the protective housing before powering on. Be sure to disconnect the power supply before removing the housing.
12. Do not place the frequency converter with reset retry function near the mechanical equipment. Because it will suddenly restart when the alarm stops.
13. It can alarmand reset only after confirming that the running signal is cut off. If it alarms and resets in the running signal state, the frequency converter may start suddenly.
14. Do not touch the terminal of frequency converter. There is high voltage on the terminal, which is very dangerous.
15. Do not change wiring and disassemble terminals during power-on.
16. The inspection and maintenance should be carried out after the main circuit power supply is cut off.
17. Please do not modify the frequency converter without permission.

1. Technical data

Rated data of frequency converter

Model	Power	Input power	Outpu power (A)	Dimensions $\mathrm{L} \times \mathrm{W} \times \mathrm{H}(\mathrm{mm})$	$\begin{array}{\|c\|} \hline \text { Mounting size } \\ \text { L×W - } \\ \text { Mounting } \\ \text { screws (mm) } \\ \hline \end{array}$
$0.4 \mathrm{~S} 1-220 \mathrm{~V}$	0.4 KW	$\left\{\begin{array}{l} \text { Single-phase } \\ \text { AC } \\ 200 \mathrm{~V}-240 \mathrm{~V} \\ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{array}\right.$	2.1	$170 * 79 * 127$	$160 * 60.5-\mathrm{M} 5$
$0.75 \mathrm{~S} 1-220 \mathrm{~V}$	0.75 KW		3.8		
$1.5 \mathrm{~S} 1-220 \mathrm{~V}$	1.5 KW		7		
$2.2 \mathrm{~S} 1-220 \mathrm{~V}$	2.2 KW		9.0	$187 * 86 * 144$	173*68-M4
$3.0 \mathrm{~S} 1-220 \mathrm{~V}$	3.0 KW		13	$216 * 101 * 151$	$204 * 83.5-\mathrm{M} 4$
$4.0 \mathrm{~S} 1-220 \mathrm{~V}$	4.0 KW		15	$237 * 111 * 168$	$216 * 88-\mathrm{M} 4$
$5.5 \mathrm{~S} 1-220 \mathrm{~V}$	5.5KW		20		
$0.4 \mathrm{~S} 3-220 \mathrm{~V}$	0.4 KW	$\left\{\begin{array}{c} \text { Three-phase } \\ \text { AC } \\ 200 \mathrm{~V}-240 \mathrm{~V} \\ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{array}\right.$	2.1	$170 * 79 * 127$	$160 * 60.5-\mathrm{M} 5$
$0.75 \mathrm{~S} 3-220 \mathrm{~V}$	0.75 KW		3.8		
$1.5 \mathrm{~S} 3-220 \mathrm{~V}$	1.5 KW		7		
$2.2 \mathrm{~S} 3-220 \mathrm{~V}$	2.2 KW		9.0	$187 * 86 * 144$	173*68-M4
$3.0 \mathrm{~S} 3-220 \mathrm{~V}$	3.0 KW		13	$216 * 101 * 151$	$204 * 83.5-\mathrm{M} 4$
$4.0 \mathrm{~S} 3-220 \mathrm{~V}$	4.0 KW		15	7*111*168	$216 * 88$
$5.5 \mathrm{~S} 3-220 \mathrm{~V}$	5.5 KW		20		
$0.4 \mathrm{G} 3-380 \mathrm{~V}$	0.4 KW	$\left\{\begin{array}{c} \text { Three-phase } \\ \text { AC } \\ 340 \mathrm{~V}-440 \mathrm{~V} \\ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{array}\right.$	1.5	$170 * 79 * 127$	$160 * 60.5-\mathrm{M} 5$
$0.75 \mathrm{G} 3-380 \mathrm{~V}$	0.75 KW		2.1		
$1.5 \mathrm{G} 3-380 \mathrm{~V}$	1.5 KW		3.8		
$2.2 \mathrm{G} 3-380 \mathrm{~V}$	2.2 KW		5.1	$187 * 86 * 144$	173*68-M4
$3.0 \mathrm{G} 3-380 \mathrm{~V}$	3.0 KW		7.1		
4.0G3-380V	4.0 KW		9.0	216*101*151	$204 * 83.5-\mathrm{M} 4$
5.5G3-380V	5.5 KW		12.6		
$7.5 \mathrm{G} 3-380 \mathrm{~V}$	7.5 KW		16.1	237*111*168	$216 * 88-\mathrm{M} 5$
$11.0 \mathrm{G} 3-380 \mathrm{~V}$	11.0 KW		25.0	$249 * 143 * 172$	$237 * 130-\mathrm{M} 5$

Selection of braking resistor

Model	Power	Input power	Power of braking	Resistance value of braking resistor
$0.4 \mathrm{~S} 1-220 \mathrm{~V}$	0.4 KW	Single-phase bry	100 W	250Ω
$0.75 \mathrm{~S} 1-220 \mathrm{~V}$	0.75 KW		100 W	200Ω

1.5S1-220V	1.5KW	$\begin{gathered} \hline 200 \mathrm{~V}-240 \mathrm{~V} \\ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{gathered}$	300 W	100Ω
$2.2 \mathrm{~S} 1-220 \mathrm{~V}$	2.2 KW		300 W	100Ω
$4.0 \mathrm{~S} 1-220 \mathrm{~V}$	4.0 KW		1000 W	75Ω
$5.5 \mathrm{~S} 1-220 \mathrm{~V}$	5.5 KW		1000 W	75Ω
$0.4 \mathrm{~S} 3-220 \mathrm{~V}$	0.4 KW	$\begin{gathered} \text { Three-phase } \\ \text { AC } \\ 200 \mathrm{~V}-240 \mathrm{~V} \\ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{gathered}$	100 W	250Ω
$0.75 \mathrm{~S} 3-220 \mathrm{~V}$	0.75 KW		100 W	200Ω
$1.5 \mathrm{~S} 3-220 \mathrm{~V}$	1.5 KW		300 W	100Ω
$2.2 \mathrm{~S} 3-220 \mathrm{~V}$	2.2 KW		300 W	100Ω
$4.0 \mathrm{~S} 3-220 \mathrm{~V}$	4.0 KW		500 W	75Ω
$5.5 \mathrm{~S} 3-220 \mathrm{~V}$	5.5 KW		1000 W	75Ω
$0.4 \mathrm{G} 3-380 \mathrm{~V}$	0.4 KW	$\left\lvert\, \begin{gathered} \text { Three-phase } \\ \text { AC } \\ 340 \mathrm{~V}-440 \mathrm{~V} \\ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{gathered}\right.$	100 W	750Ω
$0.75 \mathrm{G} 3-380 \mathrm{~V}$	0.75 KW		100 W	750Ω
$1.5 \mathrm{G} 3-380 \mathrm{~V}$	1.5 KW		300 W	400Ω
$2.2 \mathrm{G} 3-380 \mathrm{~V}$	2.2 KW		300 W	250Ω
$4.0 \mathrm{G} 3-380 \mathrm{~V}$	4.0 KW		500 W	150Ω
$5.5 \mathrm{G} 3-380 \mathrm{~V}$	5.5 KW		800 W	100Ω
$7.5 \mathrm{G} 3-380 \mathrm{~V}$	7.5 KW		1000 W	75Ω
$11.0 \mathrm{G} 3-380 \mathrm{~V}$	11.0 KW		1200 W	50Ω

2. Installation and wiring

Purpose of the terminals

Terminal	Purpose	Design description

R, S, T	Converter power supply: 380 V converter is to connect R, S, T 220 V converter is to connect R, S or R, T (according to the terminal label)	The front end of the input power supply of the converter should use the air switch as the overcurrent protection device. If the leakage protection switch is added, in order to prevent the misoperation of the leakage switch, please select the equipment with a sensitivity of more than 200 mA and an operation time of more than 100 ms .
U, V, W	Converter output, to connect the motor	In order to reduce leakage current, the motor connection line should not exceed 50 meters.
PE	Grounding	Frequency converter should be well grounded.
X1	Digital input X1	Set by parameter F5.02, the factory default is forward
X2	Digital input X2	Set by parameter F5.03, the factory default is reverse
X3	Digital input X3	Set by parameter F5.04, the factory default is multi-speed first
X4	Digital input X4	Set by parameter F5.05,the factory default is multi-speed second
X5	Digital input X5	Set by parameter F5.06,the factory default is external reset signal input
GND	Signal common terminal	Zero potential of input and output signal
AVI	0-10 signal input	0-10V
10 V	Power supply for frequency setting potentiometer	$+10 \mathrm{~V}, 10 \mathrm{~mA} \mathrm{Max}$
ACI	$4-20 \mathrm{~mA}$ analog input	4-20mA

AO	Analog output signal	Set by parameter F6.10
TA, TB, TC	Relay output	Set by parameter F5.07 Contact capacity: AC $250 \mathrm{~V} / 3 \mathrm{~A}$ DC 24V/2A

3. Commissioning and operating

(1) Operation panel and operation method

Method of returning to the original interface after setting parameters:

1. Power off and then power on again. 2. Select d-00 and press SET. 3. Longpress the SET key.

Output frequency displayed
when power-on

(2) Set the run command mode of frequency

The run command mode of frequency converter is set by parameter F .02 : There are two start-stop modes: panel control start-stop mode and terminal control start-stop mode
(1) Panel control start-stop mode: (Factory setting for panel start-stop is F0.02=0)
To use the panel control stat-stop frequency converter, press the green button on the panel to start, and the red button to stop. The converter starts with forward run by default, and the forward or reverse run needs to be set through the input terminal $\mathrm{X} 1-\mathrm{X} 5$ (the reverse setting is 4).
(2) Terminal control start-stop mode: (Factory setting for terminal start-stop is F0.02=1)

Two-wire control mode 1

Three-wire control mode 1

(3) Select ion of frequency sett ing mode of

The frequency setting mode of the converter is set by parameter F0.03. When $\mathrm{F} 0.03=4$, the running frequency is set by potentiometer, When $\mathrm{F} 0.03=2$, the running frequency is input by $\mathrm{AVI}(0-10 \mathrm{~V}$ potentiometer can be connected externally); When $\mathrm{F} 0.03=3$, the running frequency is input by ACI $(4-20 \mathrm{~mA})$; When $\mathrm{F} 0.03=1$, it is controlled by the extemal terminal (the switching value is set to be increasing/decreasing frequency).

4. Table of parameters

Para meter s	Name	Factory default value	Setting range	Description
Group F0 - Basic running parameters				
F0.00	Converter power	Based on the model	0.0-99.9kw	Current converter power
F0.01	Control mode	0	0-1	$\begin{aligned} & \hline \text { 0: V/F control } \\ & \text { 1: open-loop vector } \end{aligned}$
F0.02	Run command selection	0	0-1	0: Panel run command 1: Terminal run command
F0.03	Primary frequency source X selection	4	0-7	0 : Digital setting (preset frequency F0-07, UP/DOWN, modifiable according to the value of $\mathrm{F} 0-07$, no memory of power failure) 1: Digital setting (preset frequency F0-07, UP/DOWN, modifiable according to the value of $\mathrm{F} 0-07$ memory of power failure) 2: AIl (AVI) 3: AI2(ACI) 4: AI3 (keyboard potentiometer) 5: Multi-speed instruction 6: Simple PLC 7: PID
F0.04	Auxiliary frequency source Y selection	0	0-7	Same as F0.03
F0.05	Operation of primary and auxiliary frequencies	0	0-3	0: primary + auxiliary 1: primary - auxiliary 2: greater of the two values 3: smaller of the two values
F0.06	Frequency source selection	0	0-4	0 : Primary frequency source X 1: Operation result of primary and auxiliary frequencies (determined by operation F0.05)

Para meter s	Name	Factory default value	Setting range	Description
				2: switch between primary frequency source X and auxiliary frequency source Y 3: switch between primary frequency source X and operation result of primary and auxiliary frequencies 4: switch between auxiliary frequency source Y and operation result of primary and auxiliary frequencies
F0.07	Frequency digit setting	50.00 Hz	0Maximum frequency	The set value is the given initial value of the frequency digit
F0.08	Maximum output frequency	50.00 Hz	Upper limit frequency 400.0 Hz	The maximum output frequency is the maximum frequency allowed by the converter, which is the benchmark for acceleration/deceleration setting.
F0.09	Upper limit frequency	50.00 Hz	Lower limi frequency Maximum output frequency	The running frequency cannot exceed such frequency
F0.10	Lower limit frequency	0.00 Hz	$\|$$0-$ Uppe limit frequency	The running frequency cannot be lower than such frequency
F0.11	Treatment when reaching the lower limit frequency	0	0-2	0: Zero-speed running 1: Run at the lower limit frequency 2: Shut down
F0.12	First acceleration time	10.0s	0.1~999.9	Time required for the converter to accelerate from zero to maximum output frequency
F0.13	First deceleration time	10.0s	0.1~999.9	Time required for the converter to decelerate from maximum output frequency to zero
F0.14	Running direction	0	0-2	0 : forward, 1: reverse, 2: reverse prohibition This selection between forward and reverse is valid only when the

$\left.\begin{gathered} \text { Para } \\ \text { meter } \\ \mathrm{s} \end{gathered} \right\rvert\,$	Name	Factory default value	Setting range	Description
				command comes from the panel. The reverse prohibition is valid no matter where the command comes from.
F0.15	User password	0	$0 \sim 9999$	The password takes effect when a non-zero digit is set. If 0000 is set after decryption, the password function is disabled.
F0.16	Software version	XX.xx	01.00-99.9	Current software version. (Some parameters in this Manual match software versions after 2.35)
F0.17	Parameter initialization	0	0-3	0: no operation 1: Restore factory default value (excluding motor parameters) 2: Fault clearing 3: Restore all parameters to factory default values (including motor parameters)
F0.18	Frequency decimal point	2	1~2	
F0.19	Retain			
F0.20	Holding of digital set stop	1	0~1	$\begin{aligned} & \text { 0: No hold } \\ & 1: \text { Hold } \\ & \hline \end{aligned}$
F0. 21	Retain			
Group F1 - V/F control parameter				
F1.00	V/F curve setting	0	0-6	0: Linearity curve 1: Square curve 2: 1.5 power curve 3: 1.2 power curve 4: Multi-point VF curve 5: VF complete separation 6: VF semi-separation
F1.01	Torque lift	3.0\%	0.0~30.0\%	Manual torquelift. This value is set as a percentage of the rated voltage of the motor. If it is 0 , it will be switched to

Para meter s	Name	Factory default value	Setting range	Description
				automatic torque lift.
F1.02	Torque lift cutoff frequency	50.00 Hz	$\begin{aligned} & 0.0 \sim 50.00 \mathrm{H} \\ & \mathrm{z} \end{aligned}$	The cutoff frequency of manual torque lift
F1.03	Carrier frequency setting	Based on the model	$\begin{aligned} & 2.0 \sim \\ & 16.0 \mathrm{KHz} \end{aligned}$	Raising the carrier frequency can reduce the noise, but it will increase the calorific value of the converter.
F1.04	V/F frequency value F1	12.50 Hz	0.01 ~ frequency value F2	
F1.05	V/F voltage value V1	25.0\%	0.0 ~ voltage value V2	
F1.06	V/F frequency value F2	25.00 Hz	Frequency value F1~ frequency value F3	
F1.07	V/F voltage value V2	50.0\%	Voltage value V1~ voltage value V3	
F1.08	V/F frequency value F3	37.50 Hz	Frequency value F2 ~ motor rated frequency	
F1.09	V/F voltage value V3	75.0\%	Voltage value V2 ~ 100.0\% (motor ratec voltage)	
F1.10	Torque lifting mode	3	0~3	
F1.11	Braking ratio	90\%	0~100\%	Braking ratio of braking resistor
F1.12	Torque compensation gain	0\%	$0 \sim 150 \%$	

Para meter s	Name	Factory default value	Setting range	Description
F1.13	VF overexcitation gain	25%	$0 \sim 200 \%$	
F1.14	Oscillation suppression mode	5	$0 \sim 6$	
F1.15	VF separated voltage source	0	$0 \sim 9$	
F1.16	VF separated voltage source digit setting	0	$0 \sim$ motor rated voltage	
F1.17	VF separated voltage rising time	0.0	$0.0 \sim 1000.0$	
F1.18	VF separated voltage decelerating time	0.0	$0.0 \sim 1000.0$	
F1.19	VF separation stop mode selection	0	$0 \sim 1$	
F1.20	VF separation current closed loop control setting	100	$0 \sim$ current limiting level	
F1.21	Retain			
Group F2 - Vector control parameter				
F2.00	Velocity loop low speed Kp	20	$1 \sim 100$	
F2.01	Velocity loop low speed Ki	0.50	$1 \sim 10.00$	
F2.02	Velocity loop high speed Kp	10	$1 \sim 100$	
F2.03	Velocity loop high speed Ki	1.00	$1 \sim 10.00$	
F2.04	Velocity loop	10.00 Hz	Lower limit	

Para meter s	Name	Factory default value	Setting range	Description
	low speed frequency calculation switch point		frequency Maximum frequency	
F2.05	Velocity loop high speed frequency calculation switch point	30.00 Hz	Lower limit frequency Maximum frequency	
F2.06	Motor slip compensation gain	0%	$0 \sim 100.0 \%$	
F2.07	Retain			
F2.08	Retain			
F2.09	Retain			
F2.10	Current loop Kp	2000	$0 \sim 60000$	
F2.11	Current loop Ki	1300	$0 \sim 60000$	
F2.12	Retain			
F2.13	Retain			
F2.14	Open-loop vector slip compensation gain	100%	$0 \sim 200 \%$	
F2.15	Retain			
F2.16	Retain			
F2.17	Retain			
F2.18	Retain	Speed control (drive) torque upper limit	150.0%	$0 \sim 200.0 \%$
F2.				

Para meter s	Name	Factory default value	Setting range	
	digit setting			Description
F2.20	Maximum torque coefficient in field-weakenin g region	100%	$50 \sim 200 \%$	
F2.21	M-axis current loop scale coefficient	5	$5 \sim 300$	
F2.22	M-axis current loop integral coefficient	0	$0 \sim 65535$	
F2.23	Open-loop vector velocity loop filtering time constant	25	$0 \sim 100$	
F2.24	Open-loop vector torque lift	100	$0 \sim 500$	
F2.25	Open-loop vector torque lift cutoff frequency	20.00 Hzz	Lower limit frequency Maximum frequency	
F2.26	Torque set filter	28	$0 \sim 31$	
F2	Maximum field-weakenin g voltage overmodulatio neoefficient	105%	$0 \sim 110 \%$	
F2.28	Flux observation compensation coefficient	100%	$0 \sim 100 \%$	
Flux observation filter coefficient	300	$0 \sim 2000$		

Para meter s	Name	Factory default value	Setting range	Description
F2.30	T-axis current closed-loop coefficient	0	$0 \sim 500$	
F2.31	Torque limiting mode	0	0~1	
F2.32	Retain			
F2.33	Retain			
Group F3 - Auxiliary running parameters				
F3.00	Starting mode	0	0-1	0: Start by the start-up frequency 1: Start by the start-up frequency after DC braking
F3.01	Start-up frequency	0.50 Hz	$\begin{aligned} & 0.50 \sim \\ & 20.00 \mathrm{~Hz} \end{aligned}$	Initial frequency at which the converter is started
F3.02	Start-up frequency holding time	0	0.0~60.0s	Start-up frequency running time
F3.03	Start DC braking current	0.0\%	0.0~100\%	Value of the current that applies DC braking When the rated current of the motor is less than or equal to 80% of the rated current of the frequency converter, the current value is the percentage base value relative to the rated current of the motor; When the rated current of the motor is more than 80% of the rated current of the frequency converter, the current value is the percentage base value relative to 80% of the rated current of the frequency converter.
F3.04	Start DC braking time	0.0s	0.0~60.0s	Duration that applies DC braking
F3.05	Stop mode	0	$0 \sim 2$	0: Stop in deceleration mode, 1: Stop in deceleration mode + DC braking

Para meter s	Name	Factory default value	Setting range	Description
				2: Stop in free mode
F3.06	Starting frequency of stop DC braking	0.00 Hz	$0.00 \sim$ Upper limit frequency	DC braking starts when the frequency reaches the preset frequency
F3.07	Stop DC braking current	0.0%	$0.0 \sim 100 \%$	Value of the current that applies DC braking Same as the start DC braking
F3.08	Stop DC braking time	0.0 s	$0.0 \sim 30.0 \mathrm{~s}$	Duration that applies DC braking
F3.09	Retain F3.15	Retain	Function of F3.16	STOP/RESET key
Group F4 - Auxiliary running parameters 2				

Para meter s	Name	Factory default value	Setting range	Description
	button			1: When the frequency converter is running, the jog priority is the highest 2: Reverse running 3: Switch between forward and reverse
F4.07	Hopping frequency	0.00 Hz	$0.0 \sim$ Uppe, limit frequency	By setting the hopping frequency and range, the frequency converter can avoid the mechanical resonance point of the load.
F4.08	Hopping range	0.00 Hz	$0.0 \sim 10.0 \mathrm{~Hz}$	
F4.09	Hopping frequency 2	0.00 Hz	$0.0 \sim$ Upper limit frequency	
F4.10	Hopping range 2	0.00 Hz	$0.0 \sim 10.0 \mathrm{~Hz}$	
F4.11	Hopping frequency 3	0.00 Hz	$0.0 \sim$ Upper limit frequency	
F4.12	${ }_{3}$ Hopping range	0.00 Hz	$0.0 \sim 10.0 \mathrm{~Hz}$	
F4.13	Hopping frequency 4	0.00 Hz	$0.0 \sim$ Uppe, limit frequency	
F4.14	Hopping range 4	0.00 Hz	$0.0 \sim 10.0 \mathrm{~Hz}$	
F5 group - digital input and output parameters				
F5.00	FWD/REV Terminal control mode	0	0-3	0: Two-wire control mode 1 1: Two-wire control mode 2 2: Three-wire control mode 1 3: Three-wire control mode 2
F5.01	Terminal function test when power on	0	0-1	0 : Terminal run command is invalic when power on 1: Terminal run command is valid when power on
F5.02	Input terminal X1 function	3	$0 \sim 27$	$\begin{aligned} & \text { 0: No function } \\ & \text { 1: Forward jog control } \\ & \text { 2: Reverse jog control } \\ & \text { 3: Forward control (FWD) } \end{aligned}$
F5.03	Input terminal X 2 function	4	$0 \sim 27$	

$\left.\begin{gathered} \text { Para } \\ \text { meter } \\ \mathrm{s} \end{gathered} \right\rvert\,$	Name	Factory default value	Setting range	Description
F5.04	Input terminal X3 function	12	$0 \sim 27$	4: Reverse control (REV) 5: Three-wire running control 6: Free stop control 7: External stop signal input (STOP) 8: External reset signal input (RST) 9: External fault normally open input 10: Frequency up command (UP) 11: Frequency down command (DOWN) 12: Multi-speed selection S1 13: Multi-speed selection S2 14: Multi-speed selection S3 15: The run command channel is forced to be the terminal 16: Retain 17: Stop DC braking command 18: Frequency source switch (F0.06) 19: Retain 20: Retain 21: Retain 22: Counter reset signal (Fb .10 counting function) 23: Counter trigger signal (Fb .10 counting function) 24: Timer reset signal (Fb. 10 timing function) 25: Timer trigger signal (Fb .10 timing function) 26: Acceleration/deceleration time selection (switch between acceleration/deceleration time 1 and acceleration/deceleration time 2)
F5.05	Input terminal X4 function	13	$0 \sim 27$	
F5.06	Input terminal X5 function	8	$0 \sim 27$	
F5.07	Relay R output function setting	5	$0 \sim 14$	0 : No function 1: The frequency converter is ready for running 2: The frequency converter is running 3: The frequency converter is running at zero speed 4: Stop due to external fault 5: Converter fault 6: Frequency/velocity arrival signal (FAR)

Para meter s	Name	Factory default value	Setting range	Description
				7: Frequency/velocity detection signal (FDT) 8: Output frequency reaching the upper limit 9: Output frequency reaching the lower limit 10: Converter overload alarm 11: Timer overflow signal (relay output when reaching the set time of Fb .13) 12: Counter detection signal (relay output when the counter value reaches the counter detection value of FB12) 13: Counter reset signal (retain) 14: Retain
F5.08	R close delay			
F5.09	R Disconnect delay	0.0s	$0.0 \sim 999.98$	the change in output
F5.10	Frequency reaches the FAR detection range	5.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \sim \\ & 15.00 \mathrm{~Hz} \end{aligned}$	When theoutput frequency is within the positive and negative detection range of the set frequency, the terminal outputs an effective signal (low level).
F5.11	FDT set value	10.00 Hz	0.00 Hz ~ Upper limit frequency	
F5.12	FDT lagged value	1.00 Hz	$\begin{aligned} & 0.00 \sim \\ & 30.00 \mathrm{~Hz} \end{aligned}$	
F5.13	$\begin{aligned} & \text { UF/DOWN } \\ & \text { terminal } \\ & \text { modification } \\ & \text { rate } \end{aligned}$	$1.00 \mathrm{~Hz} / \mathrm{s}$	$\left\|\begin{array}{l} 0.10 \mathrm{~Hz} \sim \\ 200.00 \mathrm{~Hz} / \mathrm{s} \end{array}\right\|$	To set the frequency modification rate at the set frequency of UP/DOWN terminal, that is, the size of the frequency change when the UP/DOWN terminal and COM terminal are short connected for one second.
F5.14	Retain			
F5.15	Input terminal valid logic setting (X1 ~ X5)	0	$0 \sim 31$	Bit0 ~ Bit4 correspond to X1 ~ X5 respectively 0 : It means positive logic, that is, the connection between Xi terminal and common terminal is valid, and the disconnection is invalid

Para meter s	Name	Factory default value	Setting range	Description
				1: It means negative logic, that is, the connection between Xi terminal and common terminal is invalid, and the disconnection is valid
F5.16	$\begin{aligned} & \text { X1 filter } \\ & \text { coefficient } \end{aligned}$	5	0~9999	It is used to set the sensitivity of the input terminal. If the digital input terminal is susceptible to interference and causes misaction, this parameter value can be increased to enhance the anti-interference ability, but it will lead to poor sensitivity of the input terminal if the value is too large. 1: It represents 2MS scan time unit
F5.17	X2 filter coefficient	5	0~9999	
F5.18	X3 filter coefficient	5	0~9999	
F5.19	X4 filter coefficient	5	0~9999	
F5.20	X5 filter coefficient	5	0~9999	
Group F6 - Analog input and output functions				
F6.00	AVI input lower limit voltage	0\%	$\begin{aligned} & 0.00 \sim \\ & 100.0 \% \end{aligned}$	To set AVI lower limit voltage
F6.01	AVI input upper limit voltage	100.0\%	$\begin{aligned} & 0.00 \sim \\ & 100.0 \% \end{aligned}$	To set AVI upper limit voltage
F6.02	Corresponding setting of AVİ lower limit	0.0\%	$\begin{aligned} & -100.0 \% \sim \\ & 100.0 \% \end{aligned}$	To set the corresponding setting of AVI lower limit, which corresponds to the percentage of the maximum frequency
F6.03	Corresponding setting of AVI upper limit	100.0\%	$\begin{aligned} & -100.0 \% \sim \\ & 100.0 \% \end{aligned}$	To set the corresponding setting of AVI upper limit, which corresponds to the percentage of the maximum frequency
F6.04	ACI input lower limit current	0.0\%	$\begin{aligned} & 0.00 \sim \\ & 100.0 \% \end{aligned}$	To set ACI input lower limit current
F6.05	ACI input upper limit current	100.0\%	$\begin{aligned} & 0.00 \sim \\ & 100.0 \% \end{aligned}$	To set ACI input upper limit current
F6.06	Corresponding setting of ACI lower limit	0.0\%	$\begin{aligned} & -100.0 \% \sim \\ & 100.0 \% \end{aligned}$	To set the corresponding setting of ACI lower limit, which corresponds to the percentage of the maximum frequency
F6.07	Corresponding	100.0\%	$-100.0 \% \sim$	To set the corresponding setting of ACI

Para meter s	Name	Factory default value	Setting range	Description
	setting of ACI upper limit		100.0\%	upper limit, which corresponds to the percentage of the maximum frequency
F6.08	Analog input signal filtering time constant	0.1s	0.1~5.0s	This parameter is used to filter the input signals of AVI, ACI and panel potentiometer to eliminate the influence of interference.
F6.09	Analog input anti-vibration deviation limit	0	$\begin{aligned} & 0.00 \sim \\ & 100.0 \% \end{aligned}$	When the analog input signal fluctuates frequently around a given value, this parameter can be set to suppress the frequency fluctuation caused by such signal fluctuation.
F6.10	AO analog output teminal function selection	0	$0 \sim 5$	```0: Output frequency, \(0 \sim\) Maximum frequency 1: Set frequency, \(0 \sim\) Maximum frequency 2: Output current, \(0 \sim 2\) times rated current 3: Output voltage, \(0 \sim 2\) times rated voltage 4: AVI, 0~10V 5: ACI, \(0 \sim 20 \mathrm{~mA}\)```
F6.11	AO functional lower limit	0.0		set the functional upper/lower limit
F6.12	AO functional upper limit	100.0\%		of AO selection
F6.13	AO output lower limit	0.0		
F6.14	AO output upper limit	100.0\%		To set AO output upper/hower limit
Group 77 - Program running parameters (PLC)				
F7.00	Multi-speed frequency 1	5.00 Hz	Lower limit frequency upper limit frequency	To set speed 1 frequency
F7.01	Multi-speed frequency 2	10.00 Hz	Lower limit frequency upper limit frequency	To set speed 2 frequency

Para meter s	Name	Factory default value	Setting range	Description
F7.02	Multi-speed frequency 3	15.00 Hz	Lower limit frequency upper limit frequency	To set speed 3 frequency
F7.03	Multi-speed frequency 4	20.00 Hz	Lower limit frequency upper limit frequency	To set speed 4 frequency
F7.04	Multi-speed frequency 5	25.00 Hz	Lower limit frequency upper limit frequency	To set speed 5 frequency
F7.05	Multi-speed frequency 6	37.50 Hz	Lower limit frequency upper limit frequency	To set speed 6 frequency
F7.06	Multi-speed frequency 7	50.00 Hz	Lower limit frequency upper limit frequency	To set speed 7 frequency
F7.07	Programmable running control (simple PLC running)	0	$0 \sim 2$	0 : Single cycle 1: Continuous cycle 2: Maintain the final value after single cycle
F7.08	Stop memory selection	0	0~1	0: Stop without memory 1: Stop with memory
F7.09	Power off memory selection	0	0~1	0: power off without memory power off with memory
F7.10	T1 running time	10.0s	0.0~999.9	To set speed 1 running time
F7.11	$\begin{aligned} & \text { T2 running } \\ & \text { time } \end{aligned}$	10.0s	0.0~999.9.	To set speed 2 running time
F7.12	$\begin{aligned} & \text { T3 running } \\ & \text { time } \end{aligned}$	10.0s	0.0~999.98	To set speed 3 running time
F7.13	T4 running time	10.0s	0.0~999.9	To set speed 4 running time
F7.14	T5 running	10.0s	0.0~999.9.	To set speed 5 running time

Para meter s	Name	Factory default value	Setting range	Description
	time			
F7.15	$\begin{aligned} & \text { T6 running } \\ & \text { time } \end{aligned}$	10.0s	0.0~999.9	To set speed 6 running time
F7.16	T7 running time	10.0s	0.0~999.9.	To set speed 7 running time
F7.17	T1 running mode	0	0~3	0 : Forward running, select acceleration time 1 1: Forward running, select acceleration time 2 2: Reverse running, select acceleration time 1 3: Reverse running, select acceleration time 2
F7.18	$\begin{aligned} & \text { T2 running } \\ & \text { mode } \end{aligned}$	0		
F7.19	$\begin{array}{\|l\|} \hline \text { T3 running } \\ \text { mode } \end{array}$	0		
F7.20	$\begin{aligned} & \text { T4 running } \\ & \text { mode } \end{aligned}$	0		
F7.21	$\begin{aligned} & \text { T5 running } \\ & \text { mode } \end{aligned}$	0		
F7.22	$\begin{array}{\|l\|} \hline \text { T6 running } \\ \text { mode } \end{array}$	0		
F7.23	$\begin{aligned} & \text { T7 running } \\ & \text { mode } \end{aligned}$	0		
F7.24	Current running phase (retain)			
F7.25	Current running time (retain)			
F7.26	Multi-speed is in priority	1	0~1	0: No priority 1: Multi-speed is in priority, priority level is lower than jog
Group F8 - PID parameters				
F8.00	PID control characteristics	0	0~1	$\begin{aligned} & \text { 0: Positive effect } \\ & \text { 1: Negative effect } \end{aligned}$
F8.01	PID given quantity selection	0	0~3	```0 digit setting 1: keyboard potentiometer setting 2: AVI input 3: ACI input```
F8.02	PID feedback	0	0~1	0: AVI input

Para meter s	Name	Factory default value	Setting range	Description
	quantity selection			1: ACI input
F8.03	PID digit setting	3.0	PID range lower limit \sim PID range upper limit	The given value when PID given source is digit setting
F8.04	PID command acceleration/de celeration time	0.0	$\begin{aligned} & 0.00 \sim \\ & 100.0 \mathrm{~s} \end{aligned}$	
F8.05	PID bias setting	0.0	0~100.0\%	
F8.06	PID bias holding time	0.0	0~6000.0s	
F8.07	Upper limit of PID bias	100.0	0~100.0\%	
F8.08	Lower limit of PID bias	0.0	$\begin{array}{\|l\|} \hline 00.0 \% \sim \\ 100.0 \% \\ \text { (Maximum } \\ \text { frequency) } \end{array}$	
F8.09	Proportional gain	25.00	0.00~600.00	
F8.10	Integral time	1.0	0: No integral $0.1 \sim 100.0 \mathrm{~s}$	
F8.11	Derivative time	0.00	$\begin{array}{\|l\|} \hline \begin{array}{l} 0.00: \mathrm{No} \\ \text { derivative } \\ 0.00 \sim 10.00: \end{array} \\ \hline \end{array}$	
F8.12	PID output upper limit	100.0	0.0~100.0\%	
F8.13	PID output lower limit	0.0	0.0~100.0\%	
F8.14	PID output filtering time	0.00	0.00~10.00	
F8.15	Feedback fault action selection	2	$0 \sim 4$	0: Run at upper limit frequency Run at lower limit frequency Run at digit set frequency 3: Stop in deceleration mode

Para meter s	Name	Factory default value	Setting range	Description
				4: Stop in free mode
F8.16	Loss detection value	0.0	0.0~100.0\%	
F8.17	Loss detection time	1.0	0.0~100.0s	
F8.18	Overvalue detection value	100.0	0.0~100.0\%	
F8.19	Overvalue detection time	1.0	0.0~100.0s	
F8.20	PID sleep control	0	$0 \sim 2$	0: No sleep function 1: Internal wake-up 2: External input terminal control
F8.21	Sleep shutdown mode	0	0~1	0: Stop in deceleration mode 1: Stop in free mode
F8.22	Sleep frequency	0.00	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	
F8.23	Sleep pressure	95.0\%	$\begin{array}{\|l\|} \hline \text { F8.25 } \\ \sim 100.0 \% \end{array}$	
F8.24	Sleep delay time	30.0	0.0~6000.0	
F8.25	Wake-up pressure	80.0\%	0.0\% ~ 88.23	
F8.26	$\begin{aligned} & \text { Wake-up delay } \\ & \text { time } \end{aligned}$	3.0	0.0~60.0s	
F8.27	PID range lower limit	0.0	$\begin{array}{\|r} -3276.8 \sim \\ 3276.8 \end{array}$	Since the display screen has 4 digital tubes, the number of digits displayed may not be consistent with the actual value, but it does not affect the final set value.
F8.28	PID range upper limit	10.0	$\begin{array}{\|r} -3276.8 ~ \\ 3276.8 \end{array}$	Since the display screen has 4 digital tubes, the number of digits displayed may not be consistent with the actual value, but it does not affect the final set value.

Para meter s	Name	Factory default value	Setting range	Description
F8.29	Number of decimal points of the range	1	0~3	0: Display no decimal point 1: Display one decimal point 2: Display two decimal points 3: Display three decimal points This parameter is only used to control the decimal point display of F8.03, F8.25, F8.26, d0-11 and d0-12.
F8.30	Water shortage detection frequency	48.00 Hz	0.00 Hz Maximum frequency	
F8.31	Water shortage detection pressure	0.0	$0.0 \sim \mathrm{~F} 8.28$	
F8.32	Water shortage detection time	60.0s	$\text { s } 0 \sim 6500.0$	
F8.33	Water shortage restart time	600.0 s	$\text { s } 0 \sim 6500.0$	
F8.34	Number of restarts due to water shortage	6	9999	
F8.35	Retain			
F8.36	Photovoltaic pump running mode	0	0~2	0: Disable 1: Photovoltaic pump running mode 1 2: Photovoltaic pump running mode 2
F8.37	MPPT low point working voltage	Based on the model	$0 \sim \text { MPPI }$ high point working voltage	If the bus voltage (d-03) is higher than the set value of MPPT high point working voltage (F8.38), run at the maximum frequency; If it is lower than
F8.38	MPPT high point working voltage	Based on the model	MPPT low point working voltage ~ $1,000 \mathrm{~V}$	working voltage (F8.38), run at the frequency obtained from (bus voltage /MPPT high point working voltage) * maximum frequency; If the bus voltage reaches the MPPT low point working voltage (F8.37), run at the running frequency for water output (F8.40).
F8.39	Water shortage fault shielding	0	0~1	0: No shielding 1: Shielding

Para meter s	Name	Factory default value	Setting range	Description
F8.40	Undervoltage restart enabling	0	0~1	$\begin{aligned} & \hline 0: \text { Disable } \\ & \text { 1: Enable } \end{aligned}$
F8.41	Undervoltage restart delay	10.0s	$\begin{aligned} & 0.0 \mathrm{~s} \sim \\ & 360.0 \mathrm{~s} \end{aligned}$	The delay time is calculated from the beginning of undervoltage
F8.42	Self-start when power on	0	0~1	$\begin{aligned} & \hline \text { 0: Disable } \\ & \text { 1: Enable } \end{aligned}$
F8.43	Proportion of the water shortage detection current in the no-load current of the photovoltaic pump	0.0	$\begin{aligned} & 0.0 \sim \\ & 300.0 \% \end{aligned}$	If the frequency converter operates above the minimum running frequency for water output (F8.40) and the output current is less than the no-load current of the motor (F9.11)* the proportion of the water shortage detection current in the no-load current of the photovoltaic pump (F8.39), the frequency converter will report the water shortage fault ELT after the water shortage detection time of the photovoltaic pump (F8.41).
F8.44	Minimum running frequency for water output of the photovoltaic pump	0.00	$\begin{aligned} & 0 \sim \\ & 99.99 \mathrm{~Hz} \end{aligned}$	
F8.45	Water shortage detection time of the photovoltaic pump	0.0	0~250.0s	
F8.46	Swing frequency control	0	0~1	0: Disable 1: Enable
F8.47	Swing amplitude control	0	0~1	0 : Fixed swing amplitude The reference value of swing amplitude is the maximum output frequency (F0.08). 1: Variable swing amplitude The reference value of swing amplitude is the given channel frequency.
F8.48	Starting mode selection after	0	0~1	0 : Start according to the memory before stop

Para meter s	Name	Factory default value	Setting range	Description
	swing frequency stop			1: Restart
F8.49	Swing frequency amplitude value	0.0\%	$\begin{aligned} & 0.0 \% \sim \\ & 100.0 \% \end{aligned}$	The swing frequency amplitude value is a percentage relative to the maximum output frequency (F0.08).
F8.50	Hopping frequency	0.0\%	$\begin{aligned} & 0.0 \% \sim \\ & 50.0 \% \end{aligned}$	This function code refers to the amplitude of rapid decline after the frequency reaches the upper limit ofthe frequency in the process of frequency swing, and it also refers to the amplitude of rapid rise after the frequency reaches the lowerlimit of the frequency swing. This value is a percentage relative to the swing frequency amplitude value (F8.49). If it is set as 0.0%, there is no hopping frequency.
F8.51	Swing frequency rising time	5.0s	$\begin{aligned} & 0.1 \mathrm{~s} \sim \\ & 400.0 \mathrm{~s} \end{aligned}$	The running time from the lower limit to the upper limit of swing frequency.
F8.52	Swing frequency drop time	5.0s	$\begin{aligned} & 0.1 \mathrm{~s} \sim \\ & 400.0 \mathrm{~s} \end{aligned}$	The running time from the upper limit to the lower limit of swing frequency
F8.53	Delay of the lower limit of swing frequency	5.0s	$\begin{array}{\|l\|} 0.1 \mathrm{~s} \sim \\ 999.9 \mathrm{~s} \end{array}$	To set the delay of the lower/upper limit
F8.54	Delay of the lower limit of swing frequency	5.0s	$\begin{aligned} & 0.1 \mathrm{~s} \sim \\ & 999.9 \mathrm{~s} \end{aligned}$	of swing frequency.
F8.55	Retain			
Group F9 - Motor parameter setting				
F9.00	Rated power	Based on		Motor parameter setting

Para meter s	Name	Factory default value	Setting range	Description
		the model		
F9.01	Rated voltage	Based on the model	$1 \sim 500 \mathrm{~V}$	Motor parameter setting
F9.02	Rated current	Based on the model	$\begin{aligned} & 0.01 \sim \\ & 99.99 \mathrm{~A} \end{aligned}$	
F9.03	Rated rotation speed	Based on the model	$\begin{aligned} & 0 \sim \\ & 60000 \mathrm{rpm} \end{aligned}$	
F9.04	Rated frequency	50.0 Hz	$\begin{aligned} & 1.0 \sim \\ & 400.00 \mathrm{~Hz} \end{aligned}$	
F9.05	Parameter identification	0	$0 \sim 1$	0: Disable parameter identification; 1: Enable static identification of parameters, automatically set to 0 at the end of identification;
F9.06	Stator resistance	Based on the model	$\begin{aligned} & 0.001 \sim \\ & 65.535 \Omega \end{aligned}$	For different models, there are corresponding default values, and parameter identification will automatically change the value;
$\left\|\begin{array}{l} \text { F9.07 } \\ \sim \\ \text { F9.09 } \end{array}\right\|$	Rotor resistance, leakage inductance, mutual inductance, etc	Based on the model		For different models, there are corresponding default values, and parameter identification will automatically change the value;
F9.11	No-load current	Based on the model	$0.01 \sim$	To set no-load current of motor; For different models, there are corresponding default values, and parameter identification will automatically change the value;
Group FA - Protection parameter setting				
FA. 00	Overload protection	00	0000~9999	Units digit: Enable motor overload Tens digit: Enable converter overload warning (1 : terminal function output), enable converter overload warning: 2 : terminal function output, outage report
FA. 01	Motor overload protection factor	100\%	$\begin{aligned} & 30 \% ~ \\ & 110 \% \end{aligned}$	The motor overload protection factor is the percentage of the rated current value of the motor to the rated output current value of the frequency

Para meter s	Name	Factory default value	Setting range	Description
				converter.
FA. 02	Undervoltage protection level	180/360V	$\begin{aligned} & 150-280 \\ & 300 \sim 480 \mathrm{~V} \end{aligned}$	This function code specifies the minimum allowable DC bus voltage when the converter is working normally.
FA. 03	Overvoltage stall enable	1	0~1	0: Disable 1: Enable
FA. 04	Overvoltage limit level	$375 / 720 \mathrm{~V}$	$\left.\begin{array}{\|l} 350-380 \\ 660 \sim 790 \mathrm{~V} \end{array} \right\rvert\,$	The overvoltage limit level defines the operating voltage for overvoltage stall protection
FA. 05	Current limiting level	150\%	$\begin{aligned} & 30 \% ~ \\ & 200 \% \end{aligned}$	The current limiting level defines the threshold of current for the automatic limiting operation, and its set value is a percentage relative to the rated current of the frequency converter.
FA. 06	Frequency drop rate during current limiting	0	$\begin{aligned} & 0 \sim \\ & 99.99 \mathrm{~Hz} / \mathrm{s} \end{aligned}$	
FA. 07	Selection of current limiting action	0	$0 \sim 2$	0: Void 1: Acceleration/deceleration is effective, and constant speed is ineffective 2: Acceleration/deceleration is effective, and constant speed is effective
FA. 08	Converter overload alam level	120\%	$50 \sim 150 \%$	It refers to the threshold of current for converter overload alam action, andits set value is the percentage relative to the rated current of the converter.
FA. 09	Converter overload alam delay	5.0s	0.0~15.0s	It refers to the delay time from the moment that the output current of the frequency converter becomes continuously greater than the overload alarm level (FA.08) to the moment that the overload alarm signal is sent.
FA. 10	Oscillation suppression coefficient	30	$0 \sim 200$	Generally, when motor oscillation occurs, the oscillation suppression coefficient should be increased.
FA. 11	Amplitude	20	0~1000	To set the maximum amount of

Para meter s	Name	Factory default value	Setting range	Description
	suppression coefficient			adjustment for oscillation suppression.
FA. 12	Oscillation suppression lower limit frequency	5.00 Hz	0.0 ~ Oscillation suppression upper limit frequency (200.00Hz)	Oscillation suppression is ineffective when it is below such frequency.
FA. 13	Oscillation suppression upper limit frequency	50.00 Hz	Oscillation suppression lower limit frequency (0) ~ 200.00 Hz	Oscillation suppression is ineffective when it is above such frequency.
FA. 14	Retain			
FA. 15	Retain			
FA. 16	Number of automatic fault resets	0	$0 \sim 10$	When the reset number is set to 0 , the automatic reset function is disabled except for manual reset. 10 means that the reset number is not limited.
FA. 17	Automatic fault reset interval time	3.0s	$0.5 \sim 25.0 \mathrm{~s}$	To set the automatic fault reset interval time
FA. 18	VF overcurrent/ove rvoltage suppression enable	3	0~3	0: no operation 1: Enable overcurrent suppression 2: Enable overvoltage suppression 3: Enable overcurrent/overvoltage suppression
FA. 19	VF overcurrent suppression Kp	20	$0 \sim 100$	
FA. 20	Current compensation factor of VF multiple speed overcurrent stall action	50	$50 \sim 200$	
FA. 21	VF overvoltage suppression Kp	60	$0 \sim 100$	

Para meter s	Name	Factory default value	Setting range	Description
FA. 22	Maximum frequency of VF overvol tage stall rise	5	$0 \sim 50$	
FA. 23	VF overvoltage stall voltage regulation Kp	80	$0 \sim 100$	
FA. 24	Powerdown and undervoltage stop mode	0	0~1	```0: Report undervoltage fault, and stop in free mode; 1: Not report undervoltage fault, and stop according to the set stop mode (F3.05).```
FA. 25	Retain			
FA. 26	Output phase loss	1	0~1	0: Disableoutput phase-loss protection 1: Enable output phase-loss protection
FA. 27	DC braking voltage	$\left\|\begin{array}{l} 220 \mathrm{~V}: 370 \\ 380 \mathrm{~V}: 660 \end{array}\right\|$	$\begin{aligned} & \text { Based on } \\ & \text { model } \\ & 350 \sim 790 \end{aligned}$	
Group Fb - Display and special parameter setting				
Fb. 00	Operation monitoring parameters	0	$0 \sim 15$	Default display items of the main monitoring interface. The corresponding numbers are Group d parameters.
Fb. 01	Stop monitoring parameters	1	$0 \sim 15$	Default display items of the main monitoring interface. The corresponding numbers are Group d parameters.
Fb. 02	Motor rotation speed display factor	1.00	0.01~9999	It is used to correct the display error of the tachometer scale, and has no impact on the actual speed.
Fb. 03	Current fault	0	0~9999	Current fault code
Fb. 04	Previous fault	0	0~9999	Previous fault code
Fb. 05	Fault before the previous fault	0	0~9999	Code of fault before the previous fault
Fb. 06	Fault voltage	0	0~9999	Bus voltage at the time of fault
Fb. 07	Fault current	0	0~999.9	Bus current at the time of fault

Para meter s	Name	Factory default value	Setting range	Description
Fb .08	Fault setting frequency	0	$0 \sim 300.0$	The set frequency at the time of fault
Fb .09	Fault running frequency	0	$0 \sim 300.0$	Running frequency at the time of fault
Fb. 10	Counting and timing mode	103	000~303	Units digit: Treatment after reaching the count, 0 : single-cycle counting, stop output, 1 : single-cycle counting, continue output, 2: cycle counting, stop output 3: cycle counting, continue output. Tens digit: Retain Hundreds digit: Treatment after reaching the time, 0 : single-cycle timing, stop output, 1 : single-cycle timing, continue output, 2 : cycle timing, stop output 3: cycle timing, continue output. Thousands digit: Retain
Fb. 11	Counter reset value setting	1	0~9999	To set the counter reset value
Fb. 12	Counter detection value setting	1	0~9999	To set the counter detection value
Fb. 13	Time setting	0	0~9999s	To set the time
Fb. 14	Retain			
Fb. 15	Retain			
Fb. 16	Retain			
Fb. 17	Retain			
Fb. 18	Retain			
Fb. 19	Retain			
Fb. 20	Software upgrade date (year)			
Fb. 21	Software upgrade date (day/month)			
Fb. 22	Display	1.00		

Para meter s	Name	Factory default value	Setting range	Description
	software version			
Fb.23	Product series	321		
Fb. 24	Auxiliary display of stop and running (dual display only)	4	$0 \sim 15$	Default display items of the main monitoring interface. The corresponding numbers are Group d parameters.
Group FP - Factory parameter setting				
FP.00	Factory password			

Group d - Monitoring parameters			
Parameters	Name	Range	Smallest unit
d-00	Output frequency (Hz)	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz
d-01	Set frequency (Hz)	$0.00 \sim 400.00 \mathrm{~Hz}$	0.01 Hz
d-02	Output voltage (V)	$0 \sim 999 \mathrm{~V}$	1 V
d-03	Bus voltage (V)	$0 \sim 999 \mathrm{~V}$	1 V
d-04	Output power (A)	$0.0 \sim 999.9 \mathrm{~A}$	0.1 A
d-05	Motor rotation speed (Krpm)	$0 \sim 60000 \mathrm{Krpm}$	1 Krpm
d-06	Analog input AVI (V)	$0.00 \sim 10.00 \mathrm{~V}$	0.01 V
d-07	Analog input ACI (mA)	$0.00 \sim 20.00 \mathrm{~mA}$	0.01 mA
d-08	Analog output AO (V)	$0.00 \sim 10.00 \mathrm{~V}$	0.01 V
d-09	Input terminal state (Relay, X1-X5)	$0 \sim 3 \mathrm{FH}$	1 H
d-10	Temperature	$0 \sim 9999$	$0.1^{\circ} \mathrm{C}$
d-11	PID given value	PID range lower limit \sim PID range upper limit	1
d-12	PID feedback value	PID range lower limit \sim PID range upper limit	1
d-13	Current counting value	$0 \sim 9999$	1 s

d-14	Current timing value (s)	$0 \sim 9999 \mathrm{~s}$	1 s
d-15	Accumulative running time of frequency converter (h)	$0 \sim 9999 \mathrm{~h}$	1 h
d-16	Accumulative power-on time of frequency converter (h)	$0 \sim 9999 \mathrm{~h}$	1 h
d-17	U-phase current sampling bias value	$0 \sim 4095$	
d-18	V-phase current sampling bias Value	$0 \sim 4095$	
d-19	W-phase current sampling bias value	$0 \sim 4095$	
d-20	Retain		
d-21	Retain		
d-22	Retain		

Fault code			
Fault code	Name	Possible causes	Countermeasures
OU1 (1)	Overvoltage in accelerated running	Abnormal input voltage	Check the input power supply
		Restart the motor in rotation	Change the setting to start after DC braking
OU2 (2)	Overvoltage in decelerated running	Deceleration time is too short	Extend deceleration time
		Abnormal input voltage	Check the input power supply
OU3 (3)	Overvoltage in constant speed running	Abnormal input voltage	Check the input power supply
$\begin{array}{\|c} \mathrm{OCC} 1 \\ (4) \end{array}$	Hardware acceleration overcurrent	Acceleration time is too short	Extend acceleration time
		The power of frequency converter is small	Choose a frequency converter with a large power
		Improper setting of V/F curve or torque lift	Adjust the V/F curve or torque lift
		The IGBT module is	Contact the supplier for help

		damaged	
$\begin{array}{\|c} \mathrm{OCC} 2 \\ (5) \end{array}$	Hardware deceleration overcurrent	Deceleration time is too short	Extend deceleration time
		The power of frequency converter is small	Choose a frequency converter with a large power
		The IGBT module is damaged	Contact the supplier for help
$\begin{array}{\|c} \mathrm{OCC} \\ (6) \end{array}$	Hardware constant speed overcurrent	The grid voltage is low	Check the input power supply
		The load is mutated or abnormal	Check the load or reduce load mutation
		The power of frequency converter is small	Choose a frequency converter with a large power
		The IGBT module is damaged	Contact the supplier for help
$\begin{array}{\|c} \mathrm{OCS} 1 \\ (7) \end{array}$	Overcurrent in software accelerated running	Acceleration time is too short	Extend acceleration time
		The power of frequency converter is small	Choose a frequency converter with a large power
		Improper setting of V / F curve or torque lift	Adjust the V/F curve or torque lift
$\begin{array}{\|c\|} \hline \text { OCS2 } \\ (8) \end{array}$	Overcurrent in software decelerated running	Deceleration time is too short	Extend deceleration time
		The power of frequency converter is small	Choose a frequency converter with a large power
$\underset{(9)}{0 \mathrm{CS} 3}$	Overcurrent in software constant speed running	The grid voltage is low	Check the input power supply
		The load is mutated or abnormal	Check the load or reduce load mutation
		The power of frequency converter is small	Choose a frequency converter with a large power
$\begin{aligned} & \mathrm{EFO} \\ & (10) \end{aligned}$	Power module fault	Converter output short circuited or grounded	Check the motor wiring
		Converter transient overcurrent	See overcurrent countermeasures
		The control board is abnormal or seriously disturbed	Contact the factory for help

		The power device is damaged	Contact the factory for help
$\begin{aligned} & \hline \mathrm{OU} \\ & (11) \end{aligned}$	Overvoltage during shutdown	Abnormal input voltage	Check the voltage of power supply
$\begin{aligned} & \text { OU3 } \\ & (12) \end{aligned}$	Constant speed overvoltage	The voltage of power supply is too high	Check whether the voltage of power supply is too high
		The load is mutated or abnormal	Check the load or reduce load mutation
$\begin{gathered} \mathrm{LU} \\ (13) \end{gathered}$	Undervoltage	Abnormal input voltage	Check the voltage of power supply
		Relay failed to pull in	Contact the factory for help
$\begin{gathered} \mathrm{OH} \\ (14) \end{gathered}$	Over-temperature	The ambient temperature is too high	Improve the environment
		The space around the frequency converter is small	Adjust the space
		The air duct is blocked	Clean and clear the air duct
		The cooling fan is not running	Check the power supply of the fan and the fan itself
$\begin{aligned} & \text { OL1 } \\ & \text { (15) } \end{aligned}$	Converter overload	Improper setting of V/F curve or torque lift	Adjust the V/F curve and torque lift
		The grid voltage is too low	Check the grid voltage
		Acceleration time is too short	Extend acceleration time
		The motor is overloaded	Choose a more powerful frequency converter
$\begin{aligned} & \text { OL2 } \\ & (16) \end{aligned}$	Motor overload	Improper setting of V / F curve or torque lift	Adjust the V/F curve and torque lift
		The grid voltage is too low	Check the grid voltage
		Locked rotor or load mutation is too large	Check the load
		Motor overload protection factor is not set correctly	Set the motor overload protection factor correctly
$\begin{gathered} \hline \text { BIAS } \\ (17) \end{gathered}$	Current bias error	Hardware failure	Contact the supplier for help
$\begin{gathered} \text { CBC } \\ (18) \end{gathered}$	Cycle-by-Cycle current liming fault	The power of frequency converter is small	Choose a frequency converter with a large power
		The load is mutated or	Check the load or reduce

		abnormal	load mutation
$\begin{aligned} & \text { FBL } \\ & (19) \end{aligned}$	Low PID feedback lower limit value	PID feedback line is loose	Check the feedback line
		The feedback quantity is less than the disconnection detection value	Adjust the detection input threshold
		When the PID feedback quantity is greater than the feedback overvalue detection value, and the duration is longer than the PID feedback overvalue detection time, the frequency converter alarms the fault FBH	Check the feedback line
$\begin{aligned} & \text { FBH } \\ & (20) \end{aligned}$	PID feedback exceeds the upper limit		Adjust the detection input threshold
$\begin{aligned} & \text { EEEP } \\ & (21) \end{aligned}$	EEPROM reading/writing error	EEPROM fault	Contact the factory for help
$\begin{gathered} \text { CE } \\ (22) \end{gathered}$	Dual CPU communication failure	CPU communication failure	Contact the factory for help
$\begin{gathered} \mathrm{EF} \\ (23) \end{gathered}$	External equipment fault	External device fault input terminal is closed	Disconnect the external device fault input terminal and clear the fault (check the cause)
$\begin{aligned} & \hline \text { EPA } \\ & (24) \end{aligned}$	Parameter setting failure		
$\begin{gathered} \text { E485 } \\ (25) \end{gathered}$	Communication disconnection		Check whether the communication line is well connected and whether the line sequence is correct.
$\underset{(27)}{\text { SFOC }}$	Software overcurrent		Adjust acceleration/deceleration time; Motor parameters do not match, restart parameter identification;
ELH	Water shortage fault		
SPO	Output phase-loss fault	The wiring from the converter to motor is not normal	Troubleshoot wiring problems
		The three-phase output of	Check whether the

		the frequency converter is unbalanced	three-phase winding of the motor is normal
		The driver board is abnormal	Contact the factory for help
		The module is abnormal	Contact the factory for help
Warning code			
EPA1	Parameter setting error	The three-wire function of the converter is not set correctly	Check whether the three-wire system of the converter terminal is set correctly
SLEP	Sleep mode	The frequency converter goes into sleep mode	

Service Delivers Value, Quality Builds Brilliance

To users:

Thank you for using our products. In order to ensure that you get the best after-sales service from our company, please carefully read and follow the following terms.

1. Product warranty coverage

Any fault that occurs under normal use according to the use requirements will be covered by the warranty.

2. Product warranty period

The warranty period of this product is twelve months from the date of delivery. After the warranty period, we will provide a long-tem technical support.

3. Circumstances that not covered by the warranty

Any violation of the use requirements and damage due to human causes, natural disasters or flooding water, extemal damage, bad environment and other reasons, as well as the disassembly, modification and maintenance of the frequency converter without permission, will not be covered by this warranty.

4. Purchase this product from a reseller

If the product is purchased from a distributor or an agent, please contact such distributor or agent in case of any fault.

Please keep this Manual properly in case of need.
ef. No.: XM-H0123

Completed in July 2021

